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Measurements of nearly isotropic turbulence downstream of an active grid are
performed as a high-Reynolds-number (Reλ ≈ 720) update of the Comte-Bellot
& Corrsin (1971) data set. Energy spectra at four downstream distances from the
grid, ranging from x/M = 20 to x/M = 48, are measured and documented for
subsequent initialization of, and comparison with, large-eddy simulations (LES).
Data are recorded using an array of four X-wire probes which enables measurement
of filtered velocities, filtered in the streamwise (using Taylor’s hypothesis) and cross-
stream directions. Different filter sizes are considered by varying the separation
between the four probes. Higher-order statistics of filtered velocity are quantified by
measuring probability density functions, and hyper-flatness and skewness coefficients
of two-point velocity increments. The data can be used to study the ability of
LES to reproduce both spectral and higher-order statistics of the resolved velocity
field. In this study, the Smagorinsky, dynamic Smagorinsky, and dynamic mixed
nonlinear models are considered. They are implemented in simulations of decaying
isotropic turbulence using a pseudospectral code with initial conditions that match
the measured energy spectra at x/M = 20. Overall, it is found that the various LES
models predict accurate low-order statistics of resolved scales in isotropic turbulence
during the decay. For the spectral cutoff filter, the dynamic Smagorinsky model
simulates the energy spectrum more closely at smaller wavenumber, and the dynamic
mixed nonlinear model has closer agreement at large wavenumber. For the graded
physical-space (Gaussian) filter, the dynamic mixed nonlinear model provides the best
spectral results. The three models considered here underpredict the intermittency of
longitudinal velocity increments at small distances. For transverse velocity increments,
the models’ predictions are closer to the measured values, but differ among themselves,
with the mixed nonlinear model predicting reduced intermittency. Comparisons of
probability density functions of subgrid-scale dissipation and stresses from simulations
and experimental data reveal pronounced differences among the different models.

1. Introduction
Decaying isotropic turbulent flow has long served as important benchmark test case

for turbulence theories, models, and computer simulations. Probably the best-known
data of decaying isotropic turbulence are provided by the grid experiments of Comte-
Bellot & Corrsin (1971). This classic data set includes turbulence kinetic energy,
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decay rate, correlation functions, and one- and three-dimensional energy spectra.
Owing to the availability of three-dimensional energy spectra at various times during
the decay which allow initialization of numerical simulations and spatial filtering, the
Comte-Bellot & Corrsin (1971) data have been particularly useful in the context of
large-eddy simulations (LES). In LES, the turbulent fields are decomposed into their
small- (subgrid-) scale and large- (resolved-) scale components by spatial filtering
with a kernel, G∆(x), of characteristic size ∆ (see Leonard 1974, and reviews by
Lesieur & Métais 1996; Piomelli 1999; and Meneveau & Katz 2000). By applying the
filtering operation to the Navier–Stokes equations, the LES equations for the filtered
velocity field ũ(x, t) are obtained. These equations are unclosed because they contain
the so-called subgrid-scale (SGS) stress tensor that accounts for momentum transport
caused by unresolved motions. To close the LES equations, the SGS stress tensor is
expressed as a function of the resolved velocity field.

The success of various SGS models is often gauged by the ability of simulations to
reproduce the statistics of resolved motion, and decaying isotropic turbulence is one
of the simplest test cases. LES studies that have utilized the Comte-Bellot & Corrsin
(1971, denoted henceforth as CBC) data include, among others, Moin et al. (1991);
Dantinne et al. 1998; Meneveau, Lund & Cabot (1996); Misra & Pullin (1997); and
Ackermann & Métais (2001). In these studies, simulations are initialized using the
radial three-dimensional spectrum deduced (assuming isotropy) from the longitudinal
one-dimensional spectrum at the initial distance downstream of the grid (in CBC at
x/M = 42, where x is the downstream distance and M = 5.08 cm is the mesh size of the
grid). Energy spectra measured at two further downstream stations (at x/M = 98 and
x/M = 171) can be compared with the temporal evolution of the simulated velocity
fields’ energy spectra. Since in LES the simulated fields correspond to spatially filtered
turbulence (ũ(x, t)), the measured spectra are multiplied by the filter transfer function,

|Ĝ∆(κ)|2. In this fashion, the CBC data have been used in detailed comparisons with
simulations, based on the two-point statistics and energetics of the flow, filtered at
scales of interest in the context of LES. Comparisons with simulations have shown,
for instance, that the standard and dynamic Smagorinsky models lead to a small ‘pile-
up’ of energy spectra near the cutoff wavenumber (Moin et al. 1991 and Meneveau
et al. 1996), an issue that has motivated various spectral and hyper eddy viscosity
models (see e.g. Lesieur & Métais 1996 and Cerutti, Meneveau & Knio 2000).

Two important limitations of the CBC data for the purpose of testing LES are that
only second-order statistics (spectra) are reported, and that the Reynolds number
is low. More recent measurements in decaying grid turbulence reported in Cerutti
& Meneveau (2000) have addressed the first limitation by using an array of X-wire
probes which provided data that could be filtered spatially with a fixed filter size. In
this fashion, time series of filtered velocity were used to document probability density
functions (PDFs) and higher-order moments of filtered velocity. The Reynolds number
of the grid turbulence experiments was larger than those in CBC (about Reλ ∼ 150),
but that still can be considered moderate. Cerutti & Meneveau (2000) did not perform
comparisons of the measured data with LES.

The main objectives of this study are to update the results of Comte-Bellot
& Corrsin (1971) based on turbulence at high Reynolds number, and to provide
more data and details of interest in studies of LES. Measurements are performed
downstream of an ‘active grid’ that generates high-Reynolds-number turbulence in a
range of Reλ from about 720 to 630. In § 2, the experimental apparatus and active
grid are described. Characteristics of the flow are presented in § 3. As in Cerutti &
Meneveau (2000) data are acquired using an array of four X-wires so that statistics
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of filtered velocity can be characterized. In the present probe array, the separation
distance between probes can be varied, allowing us to implement several filter sizes
during post-processing. Results from the experiments, including measured spectra and
higher-order statistics of filtered turbulence are presented in § 4. Finally, this paper also
presents numerical simulations of decaying isotropic turbulence using several well-
known subgrid models. Detailed comparisons between LES and the measurements
are presented in § 5, and conclusions are drawn in § 6.

2. Experimental apparatus and active grid
Wind tunnels of normal laboratory size with a conventional passive grid allow

us to generate only moderate-Reynolds-number turbulence, with Taylor microscale
Reynolds numbers typically not exceeding 150. The main reason is that the root-mean-
square (r.m.s.) velocity developing downstream of a passive grid is relatively low. As
an alternative, several studies have focused on ‘active grids’. One option was proposed
by Gad-el-Hak & Corrsin (1974), in which grids with evenly distributed jets inject
secondary fluid into the flow. This apparatus yielded a modest increase in Reynolds
number (to about Reλ ∼ 160). Recently, Makita (1991) and Mydlarski & Warhaft
(1996) have developed an active grid arrangement in which randomly rotating agitator
winglets add turbulent kinetic energy to the flow. They have achieved Reλ ≈ 400–500
with a turbulence intensity range of 9.5%–20%. More recently, Mydlarski & Warhaft
(1998) built a scaled-up active grid (the mesh spacing of 11.4 cm was 2.25 times
larger than that in Mydlarski & Warhaft 1996) and a maximum Reynolds number
of Reλ ≈ 730 with a turbulence intensity of 17.4% at x/M = 31 was achieved.

The isotropy ratio (ratio of streamwise to transverse r.m.s. velocities) in the present
study was about 1.15 far behind the active grid. This value is larger than that of the
conventional passive-grid-generated turbulence that displays isotropy ratios typically
less than 1.1. The larger anisotropy is caused by the relative spatial orientation of
the agitator winglets, in which all winglets on a shaft are fixed in the same plane
(‘in-plane orientation’). In an effort to decrease the anisotropy, Poorte (1998) has
proposed a ‘staggered orientation’ in which two adjacent winglets on a shaft are fixed
perpendicular to each other so that the obstructions in the streamwise and cross-
stream directions are nearly the same. When the rotation velocity of the winglet, time
interval and initial angle of the winglets are sufficiently randomized, isotropy ratios
in a range between 0.95 and 1.1 can be obtained. However, the r.m.s. velocities are
then significantly lower than with the ‘in-plane orientation’ (e.g. Poorte 1998 obtained
a maximum Reλ of about 200). Since the present study concerns the dynamics of
high-Reynolds-number turbulence, we have built an active grid system following the
‘in-plane orientation’ approach of Mydlarski & Warhaft (1996, 1998). Deviations
from isotropy will be shown to be restricted to the very lowest wavenumbers of the
flow and of little concern for detailed comparisons with LES and models.

Experiments are performed downstream of an active grid in the return-type Corrsin
wind tunnel (Comte-Bellot & Corrsin 1966, 1971). The wind tunnel has primary and
secondary contraction ratios of 25:1 and 1.27:1, respectively. The active grid is placed
downstream of the secondary contraction. While an upstream placement would have
been desirable for decreasing the anisotropy (see CBC, and also the very recent large
active grid experiments of Larssen & Devenport 2002), existing support structures
prevent efficient placement of the active grid apparatus at that location. The test
section length is 10 m and the cross-section is 1.22m by 0.91 m. The spanwise width
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Figure 1. (a) Schematic of the active grid system; (b) schematic of the wind tunnel.

of the wind tunnel gradually increases along the test section to account for boundary
layer growth.

The design of the active grid follows that of Makita (1991) and Mydlarski &
Warhaft (1996, 1998). The active grid is composed of five horizontal and seven
vertical rotating shafts to which diamond-shaped winglets are attached. The shafts
are made of 19.05 mm square aluminium channel with 3.18 mm-thick walls. The
horizontal and vertical shafts have eight and six winglets, respectively, so that the grid
size, M , is 0.152 m. The 0.102 × 0.102 m2 square winglets are made of 3.18mm-thick
aluminium plate. Along each shaft, the winglets are attached to opposite sides in an
alternating fashion to help reduce vibrations. A schematic of the active grid is shown
in figure 1(a). Each shaft is independently driven by a 1/4 hp AC motor (Baldor
Industrial Motor, CNM20252) and each motor is controlled by an inverter (ABB
Industrial Systems Inc., ACS 140). The control signal is generated by a PC and sent
to the twelve inverters through two six-node RS-485 serial networks, using a National
Instruments AT-485 card. Each motor is set to randomly change rotational speed and
direction once every second. The speed is selected from a uniform distribution in the
range of about 210–420 r.p.m., in both directions.

A schematic of the experimental wind-tunnel setup is shown in figure 1(b). The
active grid is located at the beginning of the test section. The measurement locations
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in the streamwise (longitudinal) direction (x1) are at x1/M = 20, 30, 40 and 48. To
obtain the filtered velocities, an X-wire probe array described in Kang & Meneveau
(2001) is used for measuring two velocity components in the (x1, x2)-plane. The
velocity components in the (x1, x3)-plane can also be measured by rotating the probe
by 90◦ in roll angle. Here x2 and x3 are the cross-stream (transverse, i.e. vertical and
perpendicular to x1) and spanwise (i.e. horizontal and perpendicular to x1) directions,
respectively. The probe array is composed of four custom-made miniature X-type hot-
wire probes. Each probe holder was designed to slide smoothly in the cross-stream
direction on two supporting rods, so the separation distance, s, between the probes in
the cross-stream direction x2 could be adjusted manually between 5 and 60 mm. As in
Cerutti & Meneveau (2000) and Kang & Meneveau (2001), we use a filter scale equal
to twice the distance between two probes (i.e. ∆ = 2s) during data analysis. Four
different filter scales of ∆1 = 10 mm, ∆2 = 20 mm, ∆3 = 40 mm, and ∆4 = 80 mm
are considered. An intermediate configuration with s = 20 mm (and ∆3 = 40 mm) is
selected as a reference filter scale in the present study.

Each probe contains two 2.5 µm platinum-coated tungsten wires which are copper-
plated and soldered to the X-wire prong ends and etched, yielding an active length-
to-diameter ratio of about 200. The wire spacing between the hot wires is 0.5 mm.
The eight hot wires are operated in constant-temperature anemometry (CTA) mode
by TSI IFA300 units. The overheat ratio of the hot wires is about 1.6. The signals are
sampled at fs = 40 kHz, low-pass filtered at a frequency of 20 kHz and digitized
with a 12-bit simultaneous sample and hold A/D converter (United Electronic
Industries, WIN-30DS). The sampling time is 30 × 30 s, so the total number of data
points per channel for each measurement location is 36 × 106. The array is located
at the centre of the wind tunnel and is moved manually to various downstream
locations.

All four X-wire probes with a separation distance of s = 5mm are calibrated
simultaneously in the core region of an axisymmetric calibration jet. As a result, the
differences of the mean and r.m.s. velocities from different probes are small, within
2.0%. The velocity calibration of the X-wire probes is performed at a fixed temperature
at 15 different jet-exit velocities ranging from 3 m s−1 to 18m s−1 and for nine different
yaw angles under a constant jet velocity of 11.4 m s−1. To account for temperature
increase during the experiment, the velocity calibration of the hot wires is repeated
at the four different fixed temperatures of 18.3 ◦C, 24.3 ◦C, 26.7 ◦C and 31.2 ◦C,
covering the temperature variations during the measurements. The temperature is
measured by an Omega DP25 with a J-type sub-miniature thermocouple (JMQSS-
010E-6). We use fourth-order polynomials as a function of output voltage depending
on temperature as the calibration curves. The full calibration procedure is performed
before and after the 13-hour measurements from x1/M = 20 to x1/M = 48. All the
hot-wire anemometers give stable signals. Velocity differences from the two calibration
sets are below 2%. At each measurement location (fixed x1/M), the data for different
filter scales are sampled sequentially. Data for all four filter scales are acquired
at x1/M = 20 and 48, while only one filter scale (∆1 = 10 mm) is considered at
x1/M = 30 and 40.

3. Flow characteristics
The inhomogeneities in streamwise mean velocity 〈u1〉, and r.m.s. velocities u1r.m.s.

and u2r.m.s. in the central core region (0.25 m < x2 < 0.65 m and 0.25 m < x3 < 0.95 m)
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x1/M = 20 x1/M = 30 x1/M = 40 x1/M = 48

〈u1〉 (m s−1) 12.0 11.2 11.0 10.8
u1r.m.s. (m s−1) 1.85 1.43 1.19 1.08
u2r.m.s. (m s−1) 1.64 1.25 1.04 0.932
I = u1r.m.s./u2r.m.s. 1.13 1.14 1.14 1.16
u1r.m.s./〈u1〉 (%) 15.4 12.8 10.8 10.0
ε (m2 s−3) 22.8 9.13 4.72 3.41
εdecay (m2 s−3) 24.5 9.85 5.15 3.42
� = 0.9u3

1r.m.s./ε (m) 0.250 0.288 0.321 0.332
η (mm) 0.11 0.14 0.16 0.18
λ (mm) 5.84 7.13 8.25 8.78
ReM = 〈u1〉M/ν 1.21 × 105 1.13 × 105 1.11 × 105 1.09 × 105

Reλ = u1r.m.s.λ/ν 716 676 650 626
Re� = u1r.m.s.�/ν 30,600 27,300 25,300 23,700

Table 1. Parameters of active-grid-generated flow. For all cases, the number of data points
per channel is 36 × 106. Deviations from one probe to another are typically of 2% for mean
velocity, 2% for r.m.s. values, and 6% for dissipation.

at x1/M = 20 are 5.1%, 3.8%, and 4.1%, respectively (largest deviation from centreline
values). The spanwise r.m.s. velocities u3r.m.s. at the measurement locations at the
centreline of the wind tunnel agree with u2r.m.s. to within 1.5%, and the energy spectra
E22(κ1) and E33(κ1) coincide well with each other.

Table 1 shows the main parameters of each experimental data set, including the
streamwise mean velocity 〈u1〉, the r.m.s. velocities u1r.m.s. and u2r.m.s., the isotropy
ratio I = u1r.m.s./u2r.m.s., the turbulence intensity u1r.m.s./〈u1〉, the molecular kinetic
energy dissipation rate ε (its determination is described below), the integral scale
defined as � = 0.9u3

1r.m.s./ε (Mydlarski & Warhaft 1998), the Kolmogorov length scale
η = (ν3/ε)1/4, the Taylor microscale λ, and Reynolds numbers. Deviations from one
probe to another are typically 2% for mean velocity, 2% for r.m.s. values, and 6%
for dissipation derived as described below. To obtain the spatial quantities in the
streamwise direction from the temporal data, Taylor’s hypothesis is invoked.

Since the diameter of the measurement volume (≈ 0.5 mm) of the X-wire probe is
about five times larger than the Kolmogorov length scale η, the dissipation scale is not
sufficiently resolved in the present experiments. Therefore, the molecular kinetic energy
dissipation rate ε cannot be obtained accurately from the derivative variance and is
obtained instead from the third-order structure function as described in Lindborg
(1999) and Cerutti & Meneveau (2000). Specifically, we correct for the finite Reynolds
number and inhomogeneity effects by applying the procedure suggested by Lindborg
(1999). The approach is based on the full Kolmogorov equation for locally isotropic
turbulent flow (Lindborg 1999), as

Duuu(r, t) ≡ 〈[u1(x1 + r, t) − u1(x1, t)]
3〉 = − 4

5
εr + 6ν

∂Duu

∂r
− 3

r4

∫ r

0

r ′4 ∂Duu

∂t
dr ′, (1)

where Duu is the second-order structure function, i.e. Duu(r, t) ≡ 〈[u1(x1 + r, t) −
u1(x1, t)]

2〉. The second term on the far right-hand side of equation (1) shows the
effect of the diffusivity, and becomes negligible at sufficiently large Reynolds numbers
for r in the inertial range (r 	 η). The last term represents the decay in the mean
flow direction.
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Figure 2. Isotropy ratios, I = u1r.m.s./u2r.m.s., in the downstream direction in an
active-grid-generated decaying turbulence.

To calculate ∂Duu/∂t in equation (1), Kolmogorov’s second similarity hypothesis
(Duu = Cε2/3 r2/3) and the k–ε model for the decay of the molecular dissipation
(∂ε/∂t = −Cε2 ε2/k) are used. We choose C = 2.0 (this value falls in the range
1.9 � C � 2.3 as suggested by Sreenivasan 1995), and the standard value Cε2 = 1.92
is used. Also, k ≡ 3

2
u2

1r.m.s. is the turbulent kinetic energy. Then, equation (1) becomes

Duuu

εr
= − 4

5
+ C

[
4

(
r

η

)−4/3

+
4

√
15Cε2

17

ν

u1r.m.s.λ

(
r

η

)2/3
]

. (2)

This is equivalent to equation (6) in Lindborg (1999). The molecular kinetic energy
dissipation rate in equation (2) is determined by iteration starting from its initial guess
(the peak value of − 5

4
Duuu(r)/r in the inertial range). Calculated in this fashion, ε

is 20%–23% higher than the peak value of − 5
4
Duuu(r)/r . These differences are

comparable to those obtained in Cerutti & Meneveau (2000), and are also similar to
the trends of a recent analysis of the two-thirds law based on matched asymptotic
expansions in Lundgren (2002). The modification of C to 2.1 results in only a 1%
increase in ε, and a ±10% change of Cε2 makes only a ±2.4% change in ε (e.g. using
Cε2 = (n + 1)/n = 1.8 from the measured value of n = 1.25 – see § 4.1 below – would
give only a −1% change in ε).

When the molecular kinetic energy dissipation rates are measured directly from the
decay of the turbulent kinetic energy εdecay = −dk/dt, the difference between ε and
εdecay is between 1% and 9%. Detailed determination of εdecay is described in § 4.1.

The Taylor scale is evaluated according to

λ =

(
15

u2
1r.m.s.ν

ε

)1/2

. (3)

The Taylor-scale Reynolds number is Reλ = u1r.m.s.λ/ν. The isotropy ratio, I , is shown
in figure 2. The present active-grid turbulence deviates from isotropy by about 15%
over the measurement locations from x1/M = 20 to 48. As already summarized in § 1,
similar or higher anisotropy is observed in other active-grid turbulence experiments
with ‘in-plane’ winglet arrangements. Makita (1991) and Mydlarski & Warhaft (1996)
reported I = 1.22 at x1/M = 50 and I = 1.21 at x1/M = 68, respectively. We have
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Figure 3. Longitudinal one-dimensional energy spectra in Kolmogorov units at x1/M = 20.
The solid and dashed lines represent the longitudinal spectrum of the u1-component and the
u2-component multiplied by 3/4, respectively, as a function of the longitudinal wavenumber, κ1.
The inset shows the compensated spectra, E11(κ1) ε−2/3κ

5/3
1 and 3

4
E22(κ1) ε−2/3κ

5/3
1 . The

spectrum of the u2-component is below that of u1 at low wavenumber (κ1η < 0.003), and
higher at high wavenumber (0.1 < κ1η < 0.5). The straight solid lines are the universal spectra
with −5/3 power-law and a fitted 18/55cK = 0.527 intercept. The arrow corresponds to the
wind tunnel height wavenumber, κH = π/H , with H = 6M .

also tested the ‘staggered’ (alternating) winglet orientation. The measured isotropy
ratio was reduced to 1.10, but also the Taylor-scale Reynolds number decreased
to Reλ = 350 at x1 = 20M . To maintain high-Reynolds-number conditions, we
select the ‘in-plane orientation’, and document the remaining anisotropy using energy
spectra.

Figure 3 shows energy spectra of unfiltered turbulence at x1/M = 20. Both the
longitudinal spectrum E11(κ1) of the u1-component (solid line) and the longitudinal
spectrum E22(κ1) of the u2-component, multiplied by 3/4 (dashed line) are presented.
Here, κ1 is the longitudinal wavenumber. Statistically very well-converged spectra are
calculated by partitioning the data set into 2100 segments (with 50% overlapping) of
215 points each. The segments are windowed with a Barlett window. Since the noise
peak in the longitudinal spectrum of u1 is in the far dissipation region, quite removed
from any of the filter frequencies and scales of interest in this study, no effort is made
to remove the noise by additional filtering.

As seen in the compensated spectrum shown in the inset, the Kolmogorov constant
cK in E11(κ1) = 18

55
cKε2/3κ

−5/3
1 is obtained as cK ≈ 55

18
(0.527) ≈ 1.61, consistent with

the standard value of about 1.6 (Sreenivasan 1995). It can be clearly observed that
E11(κ1) ≈ 3

4
E22(κ1) as required by isotropy in the inertial range, over at least one and

a half decades of wavenumber. Differences between the spectra at the large scales
(low wavenumbers) occur at the end of the power-law region near wavenumbers
corresponding to the wind tunnel height (κH = π/H , where H = 6M is the wind-
tunnel height). Therefore, we conclude that the anisotropy shown in figure 2 is due to
large-scale motion of size comparable to the wind tunnel height, while inertial-range
dynamics follow isotropic behaviour.
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Figure 4. Measured longitudinal spectra (solid lines). (a) E11 at x1/M = 20, 30, 40 and 48.
(b) E11 and E22 at x1/M = 20. The dashed lines are fitted spectra from equations (4) and (5).

4. Results
4.1. Evolution of energy spectra

Longitudinal spectra of streamwise velocity at the various downstream distances
are shown in figure 4(a) (solid lines). For completeness, the corresponding data are
reproduced in tabular form in the Appendix.

As in CBC, we wish to deduce from these data the corresponding radial three-
dimensional energy spectrum E(κ) by assuming small-scale isotropy. The one-
dimensional and three-dimensional spectra (Batchelor 1953; Pope 2000) are related
by

E11(κ1) =

∫ ∞

1

x2 − 1

x3
E(κ1x) dx, (4)

and

E22(κ1) =
1

2

∫ ∞

1

x2 + 1

x3
E(κ1x) dx, (5)

where x = κ/κ1.
The inverse relationship expressing the radial spectrum in terms of the measured

longitudinal spectra involves differentiation (Batchelor 1953; Pope 2000). In order
to avoid taking derivatives of measured spectra, and to include proper limiting
conditions, a trial-and-error method already used in Cerutti & Meneveau (2000) is
applied. The following functional form for the three-dimensional energy spectrum is
assumed (Pope 2000; Cerutti & Meneveau 2000):

E(κ) = cKε2/3κ−5/3

[
κ�

[(κ�)α2 + α1]1/α2

]5/3+α3

e−α4κη

×
[
1 + α5

(
1

π
arctan{α6 log10(κη) + α7} + 1

2

)]
, (6)

where cK and αi (i = 1 to 7) are parameters to be decided by comparing with measured
data, and � and ε are the integral length scale and dissipation at each measurement
location as reported in table 1. In equation (6), κ−5/3 represents the main scaling in
the inertial range, and (κ�/[(κ�)α2 +α1]

1/α2 ])5/3+α3 , modified slightly from Pope (2000),
reproduces the energy spectrum at low wavenumbers of κ < 10 m−1. The e−α4κη factor
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The five vertical lines correspond to the wind tunnel height and four different filter scales of
∆1 = 0.01 m, ∆2 = 0.02 m, ∆3 = 0.04m and ∆4 = 0.08m. All the filter scales are in the inertial
range.

represents the usual high-wavenumber decay in the dissipation region (owing to hot-
wire attenuation we do not use the data to determine this decay but instead use the
exponential decay recommended in Pope 2000). The arctangent factor goes from 1 at
low wavenumbers to 1 + α5 at high wavenumbers and reflects the bottleneck effect at
κ ∼ 500 m−1 which appears clearly in the spectra (attempts to fit without including
the bottleneck term were noticeably less accurate). To find the parameters αi the fitted
one-dimensional energy spectra are calculated using equations (4) and (5) with E(κ)
written as in equation (6) with some assumed set of parameter values. Results are
visually compared to the measured longitudinal spectra and the procedure is repeated
until good agreement between the fitted and original one-dimensional spectra is
achieved. The parameters finally selected are: cK = 1.613, α1 = 0.39, α2 = 1.2,
α3 = 4.0, α4 = 2.1, α5 = 0.522, α6 = 10.0, α7 = 12.58. These values produce good
agreement with the measured longitudinal spectra for all four downstream locations,
in the inertial range and the bottleneck wavenumber ranges. The comparison is shown
for the streamwise velocity component in figure 4(a) (dashed lines). In the dissipation
range, the fit decays less than the measured spectra at wavenumbers where one
expects probe attenuation to occur. Figure 4(b) presents results for the transverse
velocity component at x1/M = 20, also showing good agreement and deviations from
isotropy only near and below κH .

Finally, the three-dimensional radial energy spectra at all the measurement locations
x1/M = 20, 30, 40 and 48 based on the explicit smooth curve in equation (6) are
shown in figure 5. Specifically, the energy spectrum at x1/M = 20 can be used as
initial energy distribution in LES of decaying isotropic turbulence. In figure 5 the five
vertical lines correspond to the wind tunnel height and the four different filter scales
of ∆1 = 0.01 m, ∆2 = 0.02 m, ∆3 = 0.04m and ∆4 = 0.08 m. All the filter scales are
in the inertial range.

In the present study, when reporting second-order statistics for filtered turbulence
that can be derived from the spectral information (such as r.m.s. of filtered velocity)
we will use the fitted spectra appropriately multiplied by the three-dimensional filter
transfer function. For instance, the kinetic energy k of filtered turbulence (filtered
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Figure 6. The decay exponent of the filtered kinetic energy as a function of the filter scale.
The decay exponent of unfiltered kinetic energy obtained as the integral over the fitted
three-dimensional spectrum is n = 1.25 (dashed line). Dotted line with triangles and solid
line with circles represent decay exponents of kinetic energy for cutoff- and Gaussian-filtered
velocities, respectively.

using a radial cutoff filter) is obtained by the integration of the three-dimensional
radial energy spectrum according to

k ≡
∫ π/∆

0

E(κ) dκ. (7)

For a Gaussian-filtered field, the expression is

k ≡
∫ ∞

0

E(κ) e−∆2κ2/12 dκ. (8)

The kinetic energy decay exponent n is traditionally defined as follows:

k

〈u1〉2
≡ A

(x1 − xo

M

)−n

, (9)

where A is a fitting constant, and xo the virtual origin. For the normalization
parameter 〈u1〉 in equation (9), a fixed mean velocity of 11.2 m s−1 (the average of all
four downstream locations) is used. Good results are obtained with xo = 0. Using a
power-law fitting, the decay exponent of the unfiltered kinetic energy obtained from
the integral over the fitted three-dimensional spectrum is n = 1.25. The same decay
exponent was reported for both the rod grids and the disk grids by Comte-Bellot
& Corrsin (1966). Figure 6 shows the decay exponents of filtered kinetic energy
using both the spectral cutoff and Gaussian filters described above, as a function of
filter scale. Both fall below the unfiltered kinetic energy decay exponent. The decay
exponent of the filtered kinetic energy approaches 1.25 at small filter scales. At the
largest filter scale, the decay rate is smaller, consistent with the idea that the larger
eddies are associated with longer time scales. The decay exponent for a Gaussian-
filtered field is slightly lower than for a cutoff-filtered field, since the Gaussian filter
also damps out scales larger than the filter scale.

The evolution of the spectral-cutoff-filtered and Gaussian-filtered kinetic energy
with various filter scales in the downstream direction are shown in figures 7(a) and
7(b), respectively. In both figures, the solid circles represent the unfiltered kinetic
energy obtained as the integral over the fitted three-dimensional spectrum. As can be
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Figure 7. The evolution of the unfiltered and filtered kinetic energy with various filter scales
in the downstream direction: (a) spectral cutoff filter; (b) Gaussian filter. Solid circles: the
unfiltered kinetic energy obtained as the integral over the fitted three-dimensional spectrum.
The open symbols represent the filtered kinetic energies at different filter scales: �, ∆ = ∆1;
�, ∆ = ∆2; �, ∆ = ∆3; �, ∆ = ∆4. The solid lines represent the power-law fits using equation
(9) with xo = 0.

expected from figure 6, the filtered kinetic energy at a fixed x1 and its slope decreases
as the filter scale increases. The solid line represents the kinetic energy fitted by using
the power-law fitting (equation (9)) with the decay exponents shown in figure 6. There
is good agreement between the symbols and solid lines.

In addition to the value of ε obtained from Duuu, the dissipation rate can now also
be measured from the decay rate of kinetic energy as

εdecay = −dk

dt
= −〈u1〉 dk

dx1

= nA
〈u1〉3

M

( x1

M

)−n−1

, (10)

where A = 1.80 and n = 1.25. The values of εdecay are 24.5, 9.85, 5.15, and 3.41 m2 s−3

at x1/M = 20, 30, 40, and 48, respectively. These values differ by less than 9% from
the dissipation rates shown in table 1 estimated by using the third-order structure
function.

4.2. Velocity-increment statistics at various scales

In order to report more general statistics of filtered turbulence such as structure
functions and PDFs that cannot be deduced from second-order statistics alone, the
signals are first filtered using the full data from the probe array. There, to separate
large and small scales, the two-dimensional box filter is applied to the streamwise and
cross-stream directions, and the trapezoidal rule is used for the spatial integrations.
As described in Cerutti & Meneveau (2000), the filtering process consists of a discrete
approximation to a two-dimensional box filter. In the x2-direction, a four-point
discretization is used for evaluating the filtered velocity and SGS stresses. In the
streamwise direction, the box filter is approximated using fs∆/〈u1〉 sampling points
and the x1-derivatives are evaluated using finite differences over a distance between the
probes s = ∆/2. A three-point approximation is used for the cross-stream derivatives
of velocity that will be used later in § 5.6. Filtered velocity gradients in the x2-direction
are evaluated using first-order finite differences over a distance s. The filtering and
error analysis are documented in Cerutti & Meneveau (2000) and Cerutti et al. (2000).
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Figure 8. PDFs of filtered velocity increments measured at x1/M = 48, for various filter
sizes: ∆1 (dashed line), ∆2 (dotted line), ∆3 (dash-dot line) and ∆4 (solid line): (a) for
streamwise velocity component at displacement r = ∆, (b) for transverse velocity component
at displacement r = ∆, (c) for streamwise velocity component at displacement r = 2∆, (d) for
transverse velocity component at displacement r = 2∆. Experimental data have been filtered
using a graded filter in physical space.

The local structure of filtered velocity can be characterized by the increments
defined as

δũi = ũi(x1 + r) − ũi(x1), (11)

where r is the separation distance in the streamwise direction, and i = 1 (longitudinal
velocity increment), or i = 2 (transverse velocity increment). We measure the filtered
velocity-increment PDFs at two values of r and results are shown in figure 8. As
expected, and consistent with prior results (Cerutti & Meneveau 2000), PDFs are more
intermittent at smaller filter scales. These PDFs can be compared to simulation results
to ascertain how well LES reproduces high-order statistics of resolved velocities.
From the PDFs one can also deduce high-order moments of the filtered velocity
increments at various displacement lengths (high-order structure functions). Also, in
order to document the third-order statistics at more displacements, we measure the
longitudinal structure-function skewness defined as

S ≡
〈
(ũ1(x1 + r) − ũ1(x1))

3
〉

〈(ũ1(x1 + r) − ũ1(x1))2〉3/2
, (12)
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Figure 9. Skewness coefficient of filtered longitudinal velocity increments measured at
x1/M = 48 for various filter sizes: ∆1 (dashed line), ∆2 (dotted line), ∆3 (dash-dot line)
and ∆4 (solid line).

where, again, r is the separation distance in the x1-direction. S is typically negative
due to the energy cascade across the resolved scales (Meneveau 1994). Results are
shown in figure 9 as a function of displacement normalized by ∆ for the four different
filter scales considered. As can be seen in figure 9, the longitudinal structure-function
skewness has a constant value of about −0.34 within 8% deviation at r ∼ ∆ for
different filter scales. The magnitude of the skewness decreases as the separation
distance increases, which is expected since the dynamics of velocity increments at
scales larger than the inertial range become more Gaussian. At small values of r/∆,
the skewness of the velocity increments approaches the skewness of filtered velocity
derivatives, which is known to be between −0.3 and −0.4 for ∆ in the inertial range
(Cerutti et al. 2000).

Having documented full second-order statistics and higher-order statistics of the
filtered turbulence, in the next section we perform LES and compare details of
simulation with experiment. In § 5.6 some additional experimental data will be
presented relating to SGS stress statistics and SGS dissipation.

5. Large-eddy simulation and a posteriori tests
The experimental data are used to compare with the statistics predicted from LES

using several prototypical SGS models.

5.1. Subgrid models

As a simple case, we consider the classical Smagorinsky model (Smagorinsky 1963)
which assumes quasi-equilibrium between large and small scales, and is as follows:

τ
Smag
ij − 1

3
τ

Smag
kk δij = −2νT S̃ij = −2(CS∆)2|S̃|S̃ij , (13)

where CS is the Smagorinsky model coefficient, S̃ij ≡ 1
2
(∂ũi/∂xj + ∂ũj /∂xi) is the

resolved strain-rate tensor and |S̃| = (2S̃mnS̃mn)
1/2 is the modulus of the resolved

strain-rate tensor. This model allows only forward energy transfer from the resolved
scales to the subgrid scales, and is used in many applications.

Another model to be considered here is the ‘nonlinear model’ (Leonard 1974; Clark,
Ferziger & Reynolds 1979; Liu, Meneveau & Katz 1994; Leonard 1997; Borue &



Active-grid-generated decaying turbulence and LES 143

Orszag 1998; Meneveau & Katz 2000). The nonlinear model is as follows:

τ nl
ij = Cnl∆

2ÃkiÃkj , (14)

where Ãki ≡ ∂ũi/∂xk , Cnl is the nonlinear model coefficient and depends on the
filter type and the test filter scale. This model has the realistic feature that it allows
backscatter of energy, but requires the addition of an eddy viscosity part for various
reasons, including numerical stability and better reproduction of geometric alignments
of the SGS stress eigenvectors (Tao, Katz & Meneveau 2002). With this addition one
obtains the mixed nonlinear model (see e.g. Anderson & Meneveau 1999):

τmnl
ij = −2(CS∆)2|S̃|S̃ij + Cnl∆

2ÃkiÃkj . (15)

The model coefficients can be determined using the dynamic procedure proposed by
Germano et al. (1991) from the resolved scales during the simulation. This procedure
is based on the Germano identity (Germano et al. 1991),

Lij ≡ Tij − τ ij = ũi ũj − ũi ũj , (16)

involving the difference between the SGS tensor at scale 2∆, Tij = ũiuj − ũi ũj , and
the SGS tensor τij test filtered at scale 2∆. Note that an overline denotes test filtering
at a scale 2∆. Placing the Smagorinsky and mixed nonlinear models into (16), one
obtains

Lij − 1
3
Lkkδij = C2

SMij , (17)

for the dynamic Smagorinsky model, and

Lij = C2
SMij + CnlNij , (18)

where

Mij ≡ −2∆2
[
4|S̃|S̃ij − |S̃|S̃ij

]
, (19)

Nij ≡ ∆2
[
4ÃkiÃkj − ÃkiÃkj

]
, (20)

for the dynamic mixed nonlinear model.
The average square errors from each model are given by

ESmag =
〈
Ld

ijL
d
ij

〉
− 2C2

S 〈LijMij 〉 +
(
C2

S

)2〈MijMij 〉, (21)

Emnl = 〈LijLij 〉 +
(
C2

S

)2 〈MijMij 〉 + C2
nl 〈NijNij 〉

− 2
(
C2

S 〈LijMij 〉 + Cnl 〈LijNij 〉 − C2
SCnl 〈MijNij 〉

)
, (22)

where Ld
ij = Lij − 1

3
Lkkδij . CS in the dynamic Smagorinsky model is calculated by

minimizing ESmag and is

C2
S =

〈LijMij 〉
〈MijMij 〉 . (23)

Likewise, CS and Cnl in the dynamic mixed nonlinear model (Anderson & Meneveau
1999) are obtained from ∂Emnl/∂C2

S = ∂Emnl/∂Cnl = 0 and become

C2
S =

〈LijMij 〉〈NijNij 〉 − 〈LijNij 〉〈MijNij 〉
〈MijMij 〉〈NijNij 〉 − 〈MijNij 〉2

, (24)

Cnl =
〈LijNij 〉 〈MijMij 〉 − 〈LijMij 〉 〈MijNij 〉

〈MijMij 〉 〈NijNij 〉 − 〈MijNij 〉2
. (25)
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Simulations are performed in this paper using these three models (standard
Smagorinsky, dynamic Smagorinsky, and dynamic mixed nonlinear model)
implemented in a pseudospectral simulation. Two types of filtering are considered:
spectral cutoff filtering and Gaussian filtering.

5.2. Numerical parameters and simulation details

By invoking the Taylor hypothesis, the spatially decaying grid turbulence of the
experiment is analogous to the temporally decaying turbulence. The LES code
is pseudospectral, and uses the ‘3/2 dealiasing rule’ and Adams–Bashforth (AB2)
temporal integration. The grid size is N 3 = 1283 in physical space. The numerical box
size is L = 5.12 m, the numerical grid scale, h = L/N , is h = 0.04 m and the time step
is 1.63 × 10−4 s. Simulation parameters are chosen to match those of the experiments
as closely as possible. The initial energy distribution is given by the radial three-
dimensional energy spectrum deduced from the measurements at x1/M = 20 (see
§ 4.1). In order to start the comparison between experiment and simulation using as
realistic initial condition as possible, an initial simulation starting from random-phase
Fourier modes is run for sufficiently long time until the derivative skewness becomes
steady (we use a time t = 10M/〈u1〉). The velocity field is then re-scaled in Fourier
space so that the energy spectrum corresponds again to the initial energy spectrum
of the data at x1/M = 20 (by multiplying the Fourier amplitudes with a coefficient
that depends only on wavenumber magnitude).

In the Smagorinsky model CS is fixed at its classical value for isotropic turbulence
in the inertial range (Lilly 1967), CS = 0.16. The model coefficients in the dynamic
Smagorinsky and dynamic mixed nonlinear models are calculated using equations
(23)–(25) from the resolved velocity fields during the simulation.

Since the simulated turbulence is statistically homogeneous in space, we use volume
averaging in determining numerators and denominators in the dynamic model (which
minimizes the mean-square error averaged in space, Ghosal et al. 1995). As the
dynamic coefficients vary quite slowly in time, they are evaluated only every 10 time
steps (as in Porté-Agel, Meneveau & Parlange 2000).

The three SGS models (Smagorinsky, dynamic Smagorinsky and dynamic mixed
nonlinear models) are considered in conjunction with two different filter types. The
first is the spectral cutoff filter. The cutoff filter can be considered as the implicit
numerical grid filter when using a pseudospectral code, i.e. in this case ∆ = h = 0.04 m.
This size corresponds to the case ∆3 in the experimental data. For the dynamic models
a test filter is applied at the larger scale 2∆. Test filtering should be done using a
filter that resembles the implicit grid filter as much as possible in order to preserve
scale-similarity. Hence we use a spectral cutoff filter (tests using a Gaussian test filter
and a spectral cutoff grid filter–an inconsistent combination–yield poor results, as will
be shown with an example).

The second filter type considered is a physical-space, or graded filter (Gaussian or
approximated box-filter). As summarized in § 1, when comparing LES results with
experiments using velocity statistics other than second-order moments, one must use
the experimental data that have been filtered with a graded filter before computing
the higher-order statistics. Hence, simulations should use an implicit grid filter at scale
∆ that corresponds to a graded filter. For instance, this may be accomplished (in an
approximate sense) using finite volume or finite difference discretizations. We point
out that when using such discretizations the numerical grid spacing h is typically
chosen to be smaller than the filter scale ∆ in order to account for the spectral
leakage of the physical-space filters (see e.g. Shah & Ferziger 1995) where fields



Active-grid-generated decaying turbulence and LES 145

x1/M, t�u1�/M

(a) (b)

0 10 20 30 40 50

0.05

0.10

0.15

0.20
C

S
, C

nl

x1/M, t�u1�/M

0 10 20 30 40 50

0.05

0.10

0.15

0.20

Figure 10. Time evolution of dynamic Smagorinsky and nonlinear model coefficients in
LES (1283 simulation) of temporally decaying isotropic turbulence, plotted as a function of
x1/M = t〈u1〉/M: (a) using the spectral cutoff filter with ∆ = h and a cutoff test filter at 2∆.
(b) LES using the graded Gaussian filter with ∆ = 2h and a Gaussian test filter at 2∆ = 4h.
Solid lines: CS in the dynamic Smagorinsky model; dash-dot lines: CS in the dynamic mixed
nonlinear model; dashed lines: Cnl in the dynamic mixed nonlinear model. In (b) the initial
velocity field was Gaussian filtered at 2h. Vertical dotted line at x1/M = 20 shows the time
when the velocity field is re-scaled to conform to the measured experimental spectrum.

require numerical representation at wavenumbers above π/∆. For consistency and in
order to keep the effects of numerical discretization errors to a minimum, we use the
same pseudospectral numerical method as used in the context of the spectral cutoff
filter. However, to allow approximations of graded filters, we use a numerical mesh
spacing that is smaller than the model’s filter scale, specifically we use h = ∆/2. The
scale ∆ enters the simulation through the model expression for the SGS stresses, and
is also used to initialize the LES fields at x1/M = 20 (we use a Gaussian filter at scale
∆). For the dynamic models, test filtering is performed at scale ∆T = 2∆ = 4h for
determining the model coefficients to be used in the simulation. Again, for consistency
and to preserve scale-similarity, we use a Gaussian test filter.

During the time integration no explicit filtering of the simulated velocity fields is
performed either to advance the simulation or for post-processing. We take the view
that the SGS model should, by itself, cause the simulated fields to develop spectra that
are consistent with a field filtered with a graded, physical-space filter at scale ∆ = 2h.
Since we use the same numerical box size and number of nodes (i.e. h = 0.04 m),
we now have ∆ = 0.08 m, corresponding to the experiments performed with the
filter scale ∆4. The approximated box filter used in the experiment will be considered
as an experimental surrogate of a Gaussian filter that is used in the simulations.
This approach is justified since the transfer function of the approximated box filter
employed in the experiments is quite similar to a Gaussian filter in terms of how it
affects the resolved scales in the physical space near the filter size.

5.3. Results: dynamic model and coefficient evolution

We begin by documenting briefly the dynamic model performance. The time evolution
of the dynamic coefficients is shown in figure 10 as a function of x1/M (where
x1 = 〈u1〉t) for consistency with the subsequent comparisons with the wind tunnel
data. The slight discontinuities at x1/M = 20 are due to the re-scaling of the initial
velocity field in Fourier space which makes the energy spectrum correspondent again
to the initial energy spectrum of the data at x1/M = 20. Comparison with data begins
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Figure 11. Time evolution of normalized dynamic error during simulations. Dotted line:
dynamic Smagorinsky model with cutoff filter; dashed line: dynamic Smagorinsky model with
Gaussian filter; dash-dot line: dynamic mixed nonlinear model with cutoff filter; solid line:
dynamic mixed nonlinear model with Gaussian filter. Vertical dashed line at x1/M = 20 shows
the time when velocity field is re-scaled to conform to the measured experimental spectrum.

at x1/M = 20, after which dynamic coefficients remain nearly constant. As expected
CS is about 0.15 for the cutoff grid filter (in figure 10a) and is about 0.13 for the
Gaussian filter case (in figure 10b).

In the LES using the dynamic mixed nonlinear model, both the coefficients, CS and
Cnl , are also nearly constant as shown in figure 10(a, b), but CS is lower than that
in the dynamic Smagorinsky model. Interestingly, we obtain Cnl ∼ 0.13 in the LES
with an initial condition Gaussian-filtered and Gaussian test filter. This value is 30%
lower than obtained from a priori tests (Liu et al. 1999) or simulations using second-
order finite difference methods (Anderson & Meneveau 1999), but agrees well with
the results from a priori tests that focus on eigenvector alignments (Tao et al. 2002).
Also, it is higher than the value of 1/12 that results from a first-order approximation
of the Leonard stress (Leonard 1974) or is often advocated for the dynamic mixed
model (Zang, Street & Koseff 1993).

Once the coefficients are determined, the dynamic errors, ESmag and Emnl, in
satisfying Germano’s identity can be evaluated by equations (21) and (22). Results
are shown in figure 11. The dynamic errors are normalized with 〈LijLij 〉 or 〈Ld

ijL
d
ij 〉

corresponding to the errors that result from setting the coefficients to zero (i.e. 〈Ld
ijL

d
ij 〉

for the dynamic Smagorinsky models shown in equation (21) and 〈LijLij 〉 for the
dynamic nonlinear models shown in equation (22)). It is clear in figure 11 that the
dynamic mixed nonlinear model improves upon the dynamic Smagorinsky model as
was reported by Meneveau & Katz (1999) and Anderson & Meneveau (1999). The
normalized error in LES performed with a Gaussian-filtered initial condition and
a Gaussian test filter is smaller than that obtained when using cutoff grid and test
filters.

5.4. Kinetic energy and energy spectra

Energy spectra from LES using the Smagorinsky, dynamic Smagorinsky and dynamic
mixed nonlinear models are shown in figure 12(a, c, e) (left column). They correspond
to the cutoff grid filter at scale h. Energy spectra from LES for the three models
for the Gaussian filter are shown in figure 12(b, d, f ) (right column). Note that initial
spectra at x1/M = 20 agree exactly with the experimental spectrum, by construction
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Figure 12. Three-dimensional radial energy spectra in decaying isotropic turbulence. The
solid and dashed lines represent the results from LES and experiments, respectively. The
left column (a, c, e) represents cases with the spectral cutoff filter. The experimental spectra
are shown in their entirety without filtering. The filter cutoff is at scale h (i.e. wavenumber
κ∆3

= π/∆3 = 78.5 m−1 shown by the arrow – test-filter scale is at π/(2∆3)). The right column
(b, d, f ) shows cases corresponding to Gaussian filtering at ∆4 = 2h = 0.08 m. The experimental
spectra (dashed lines) are filtered using a radial Gaussian filter. The simulation results (solid
lines) are obtained without explicit filtering (except for the initial condition). (a) Non-dynamic
Smagorinsky model with a cutoff filter; (b) non-dynamic Smagorinsky model with Gaussian
filter; (c) dynamic Smagorinsky model with a cutoff filter; (d) dynamic Smagorinsky model
with Gaussian filter; (e) dynamic mixed nonlinear model with a cutoff filter; (f ) dynamic
mixed nonlinear model with a Gaussian filter.
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(cutoff filtered at κ∆3
= π/∆3 for the left column and Gaussian-filtered at κ∆4

= π/∆4

in the right column). Overall, there is good agreement between the simulations and
experiments.

In greater detail, the Smagorinsky model in figure 12(a) damps energy at
wavenumbers near κ∆ > 1.2 and there is a rise near the largest wavenumber (this
cusp is well-known and has motivated spectral eddy viscosity models, see Lesieur
& Métais 1996). The dynamic Smagorinsky model in figure 12(c), by providing a
slightly lower coefficient, removes the damping of the energy near κ∆ ∼ 1.6, but there
is still a rise at the cutoff wavenumber. The dynamic mixed nonlinear model with
cutoff filtering shown in figure 12(e) damps wavenumbers excessively in a range of
0.32 < κ∆ < 1.6. However it yields accurate spectra near the largest wavenumber,
eliminating the rise normally seen with the Smagorinsky model. This is a somewhat
unexpected feature of the nonlinear model which in the past has been considered
beneficial in terms of stress alignments and correlation coefficients but not in terms
of elimination of energy pile-up near the cutoff wavenumber.

The energy spectra for the Gaussian filter cases also show a small rise at the
largest wavenumber for the Smagorinsky and dynamic Smagorinsky models and,
again, no rise in the energy spectra from the dynamic mixed nonlinear model. The
Smagorinsky models (both non-dynamic and dynamic) yield an overprediction of the
spectra between κ∆ = 0.32 and κ∆ = 1.6 and the non-dynamic Smagorinsky model
damps too much energy between κ∆ = 1.6 and almost up to the grid wavenumber
at π/h.

In all the cases considered so far, the test filtering has been applied in a manner
that is consistent with the grid-level filter and numerical method. While the discussion
above shows that some discrepancies exist for different models and filter types,
the overall agreement between measured and simulated spectra appears quite good.
However, without presenting extensive results about this issue, we mention that
numerous tests with several other, inconsistent, versions of dynamic SGS models yield
poor results. As an illustration, consider the case of the dynamic mixed nonlinear
model in which the simulation is performed using a spectral cutoff grid filter (∆ = h)
but where a Gaussian test filter is used at scale 2∆. In that case the dynamic model
returns coefficients of about CS ∼ 0.12 and Cnl ∼ 0.12 and the resulting spectra are
shown in figure 13. As opposed to figure 12(e) in which the same model is used
with a consistent test filter, here the spectra are very poorly predicted, with a severe
depletion of energy at intermediate wavenumbers, and a pile-up towards the higher
wavenumbers. In this case the model does not provide the correct amount of energy
dissipation during the simulation. It can be concluded that the consistent formulation
of the dynamic model is crucial.

Next, we turn attention to the decay of total kinetic energy in the resolved scales,
as an integral measure of the spectra shown before. The kinetic energy is obtained
by integrating the radial spectra shown before according to equations (7) and (8).
Figures 14(a) and 14(b) show the filtered kinetic energy as a function of time or
downstream distance. The solid circles represent the filtered kinetic energy from
experiments. The cutoff filter cases shown in figure 14(a) use a filter scale of ∆3 =
0.04 m while the Gaussian filter cases in figure 14(b) use ∆4 = 0.08 m. As anticipated
from figure 12, the kinetic energy for the cutoff filter cases is well predicted by all
models, with a slight underprediction of the kinetic energy by the dynamic mixed
model and overprediction by the eddy viscosity models. For the Gaussian filter cases
shown in figure 14(b), the dynamic mixed model yields better agreement with the
spectra. It should be pointed out that if the Smagorinsky model were used with a
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Figure 13. Three-dimensional radial energy spectra in LES (1283 simulation) of decaying
isotropic turbulence using dynamic mixed nonlinear model with a cutoff grid filter at h and
a Gaussian test filter at 2h. The solid and dashed lines represent the results from LES and
experiments, respectively.
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Figure 14. Downstream evolution of the kinetic energy of the filtered turbulence: (a) spectral
cutoff-filtered at ∆ = h; (b) ∆ = 2h with an initial condition Gaussian filtered at 2h. The solid
circle represents the filtered kinetic energy from experiments. Dashed line: Smagorinsky model;
dash-dot line: dynamic Smagorinsky model; solid line: dynamic mixed nonlinear model.

higher value for the coefficient (for Gaussian filters values as high as CS = 0.2 are
sometimes used) the agreement could be improved. In the simulations the dynamic
model does not yield such high coefficients (even with consistent filtering) and so the
decay rate is less. A possible reason is the closeness of the test-filtering scale to the
integral scale (∆T ∼ �/2) in this case.

Summarizing the comparisons of kinetic energy and spectra in LES and active-grid
turbulence, we find that for the spectral cutoff filter the dynamic Smagorinsky model
simulates the energy spectrum more closely at smaller κ , and the dynamic mixed
nonlinear model has closer agreement at large κ , while the dynamic mixed nonlinear
model yields best results for the Gaussian filter case in which the model filter is set
to twice the numerical grid filter.

5.5. Higher-order statistics of filtered turbulence

Energy spectra provide complete information about two-point correlations and
second-order moments. As already pointed out in § 4.2, the statistics of the local
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Figure 15. Probability density function of the filtered velocity increment δũi = ũi(x1 + r) −
ũi(x1) at r = ∆ and at x1/M = 48. For the data the filter is the graded filter in physical
space at ∆4 = 0.08m, and the simulation corresponds to the Gaussian filter at ∆ = 0.08m
(∆ = 2h). The velocity increments are normalized with their r.m.s. values δũir.m.s., and i = 1, 2:
(a) δũ1 (longitudinal velocity increments); (b) δũ2 (transverse velocity increments). Dashed
line: experimental data; dotted line: Smagorinsky model; dash-dot line: dynamic Smagorinsky
model; solid line: dynamic mixed nonlinear model.

turbulence structure can be characterized more fully by studying the filtered velocity
increments (see equation (11)). Specifically, we now investigate whether LES provides
accurate PDFs of the filtered velocity increments. We limit the comparison to the last
time during the decay and compare with the measurements at x1/M = 48. Since the
data have been filtered using a graded filter in physical space, we only compare with
the simulations using the Gaussian filter. In order to focus attention on the high-
order statistics, the measured and simulated velocity increments are normalized with
their respective r.m.s. values. These are second-order statistics and as such they have
already been taken into account during the comparison of energy spectra in the
preceding section.

Figure 15 shows a comparison between PDFs of δũi from the experiment and LES.
The separation distance is equal to the filter scale (r = ∆). For the streamwise velocity
component δũ1 (figure 15a), the distribution is negatively skewed and non-Gaussian
behaviour is observed in the tails of the distributions. Interestingly, LES with all
three models predict essentially the same PDF behaviour, which is noticeably less
intermittent than the measured PDFs. The latter have slightly longer tails.

For the cross-stream velocity component δũ2 (figure 15b), the distribution is
nearly symmetric and smaller differences between the experiment and simulations are
observed. However, near the tails of the PDF the dynamic mixed model underestimates
slightly the intermittency.

To compare the differences in intermittency more clearly, we measure the hyper-
flatness coefficients of various orders. The hyper-flatness factor is defined as

Fδũi
(n) ≡ 〈(δũi)

n〉
(δũir.m.s.)n

, (26)

where n is an even exponent equal to or greater than 2 (no summation over i).
By definition, Fδũi

(2) = 1. Also, we recall that for a Gaussian random variable of
unit variance the hyper-flatness is given by FG(n) = (2π)−1/22(n+1)/2Γ [(n + 1)/2].
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Figure 16. Hyper-flatness of the filtered velocity increment δũi , Fδũi
(n) ≡ 〈(δũi)

n〉/(δũir.m.s.)
n,

where n is an even exponent equal to or greater than 2, at x1/M = 48: (a) δũ1 at r = ∆;
(b) δũ2 at r = ∆; Solid circles represent the filtered experimental data. Dotted line: Smagorinsky
model; dash-dot line: dynamic Smagorinsky model; solid line: dynamic mixed nonlinear model;
dashed line with squares: hyper-flatness of a Gaussian variable.
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Figure 17. Hyper-flatness of the filtered velocity increment δũi , Fδũi
(8) ≡ 〈(δũi)

8〉/(δũir.m.s.)
8

as a function of displacement, at x1/M = 48: (a) δũ1; (b) δũ2; solid circles represent the filtered
experimental data. Dotted line: Smagorinsky model; dash-dot line: dynamic Smagorinsky
model; solid line: dynamic mixed nonlinear model; dashed line: hyper-flatness of Gaussian
variable, FG(8).

Deviations of Fδũi
(n) from FG(n) quantify the deviations from Gaussian behaviour.

Figures 16(a) and 16(b) show the hyper-flatness for the streamwise and cross-stream
components, δũ1 and δũ2, respectively, from the filtered experimental data and LES at
x1/M = 48 and r = ∆. The filtered experimental data are shown with solid circles. The
simulations underestimate the hyper-flatness of the longitudinal velocity component,
with the three models giving approximately the same results. Even though the general
trends appear to be well predicted, for n = 8 the simulations fall only about half-way
between the Gaussian and the measured values, i.e. they underestimate longitudinal
intermittency quite significantly. As could already be deduced from the PDFs, the
situation is different for the transverse velocity increments, where the models differ
among themselves but give more realistic results.

Figures 17(a) and 17(b) show similar comparisons for the velocity increments
evaluated at several displacements larger than the filter size, for n = 8. As r grows
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Figure 18. Skewness coefficients of the longitudinal structure function as a function of
displacement, x1/M = 48: Solid circles: experiment (same as solid line in figure 9); dotted line:
Smagorinsky model; dash-dot line: dynamic Smagorinsky model; solid line: dynamic mixed
nonlinear model. The vertical arrow corresponds to the integral length scale.

larger and approaches the integral scale � (∼ 4∆), the statistics approach Gaussian
behaviour. Whereas the moments of the longitudinal velocity increments at r > ∆

from the LES show the same trend as discussed above (the simulations underestimate
longitudinal intermittency), the moments of the transverse velocity increments at
r > ∆ depend on the models. The eddy viscosity models overpredict transverse
intermittency at about r < 3∆ and underpredict it for r > 3∆. The dynamic mixed
nonlinear model underpredicts the transverse intermittency at all r > ∆.

Returning to the case of r = ∆ for longitudinal velocity increments, a possible cause
of the higher intermittency in the experimental data compared to simulation could
be that the experimental data are only filtered in two directions, whereas the LES
fields correspond to three-dimensional filtering. We have examined this possibility by
analysing simulation results using two- and three-dimensional filtering at scales four
times larger than the grid scale. The PDFs of normalized velocity increments filtered
in two or three dimensions are virtually indistinguishable (there is a small difference
in the r.m.s. of velocity increments – as expected, the r.m.s. of two-dimensional
filtered velocity is slightly larger than that of three-dimensional filtered variables –
but the normalized PDFs are insensitive to this difference). We conclude that the
measured PDFs accurately represent the PDFs of filtered turbulence and that the
effect of two- vs. three-dimensional filtering on the shape of normalized PDFs
is negligible.

The other issue concerns convergence of moments. We have checked that all the
PDFs multiplied by powers of the velocity increments tend to zero sufficiently fast
at the tails for the required moments to converge. Hence the nth-order moments of
velocity increments reported in figures 16 and 17 are statistically well converged, up
to n = 8.

The structure-function skewness of the filtered velocity, defined in equation (12)
is evaluated from the simulations and compared to the data. Figure 18 shows the
negative of the skewness coefficient as a function of displacement. The experimental
data (solid circles) show that −S is about 0.33 at the filter scale r = ∆, and
decreases as the separation distance increases. The mixed nonlinear model (solid line)
yields a slight overprediction of the skewness at all displacements, but follows the
measured trends rather closely, including the curvature. The eddy viscosity models,
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Figure 19. PDF of local SGS dissipation, −τij S̃ij , normalized with u3
1r.m.s./M , at x1/M = 48.

The filter type is Gaussian at ∆4 = 2h = 0.08 m: (a) eddy viscosity models; (b) dynamic
mixed nonlinear model. Dashed line: surrogate SGS dissipation from filtered experimental

data, −(τ11S̃11 + 2τ22S̃22 + 6τ12S̃12); dotted line: −τij S̃ij from Smagorinsky model; dash-dot

line: −τij S̃ij from dynamic Smagorinsky model; dashed-dot-dot line: −τij S̃ij from dynamic
mixed nonlinear model; solid line: Surrogate SGS dissipation from dynamic mixed nonlinear

model, −(τ11S̃11 + 2τ22S̃22 + 6τ12S̃12). The numbers represent the mean SGS dissipations.

while reproducing the general order of magnitude of the skewness, yield a qualitatively
different curvature of S(r), and overpredict the skewness at r → 0.

5.6. SGS dissipation and stress

In this section we compare variables that are defined in terms of the SGS velocity
field, as measured in the experiments and predicted by the SGS models during the
simulations. A variable of interest is the local SGS energy dissipation, defined as

−τij S̃ij . Its average value enters as a sink term in the mean kinetic energy budget of
the resolved velocity field. The local dissipation has generated much interest because
it indicates the presence of ‘backscatter’ of energy from small to large scales, when

−τij S̃ij < 0 (Piomelli et al. 1991).
Figure 19 shows the PDF of the local SGS dissipation computed at x1/M = 48

for the graded, physical-space filter at ∆4 = 2h. The dashed line represents the
experimental values obtained from the filtered experimental data. Since we do not

measure all of the terms comprising the tensor contraction of −τij S̃ij , as in Liu et al.

(1994) we compute an experimental surrogate SGS dissipation −(τ11S̃11 + 2τ22S̃22 +

6τ12S̃12). The data are normalized with u3
1r.m.s./M . We observe a significant fraction of

the data where the local SGS dissipation is negative, which indicates the backscatter
of energy. The numbers shown in the figures represent the mean SGS dissipations,
also normalized with u3

1r.m.s./M . Under conditions of quasi-equilibrium, the mean
value should equal the molecular dissipation ε. The measured average value is
0.43 × u3

1r.m.s./M = 3.55 m2 s−3, i.e. about 4% larger than ε measured at x1/M = 48
(see table 1).

We now examine the PDFs of modelled local SGS dissipation from the LES, also
at x1/M = 48. As shown in figure 19(a), by definition the Smagorinsky and dynamic
Smagorinsky models give only positive dissipation. As shown in figure 19(b), the
mixed nonlinear model allows backscatter of energy. The PDF of the surrogate SGS

dissipation, −(τ11S̃11 + 2τ22S̃22 + 6τ12S̃12), from the dynamic mixed nonlinear model
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is also plotted in figure 19(b) for a comparison with that from the experiment. The
numbers shown in the figures representing the normalized mean SGS dissipations
show that the eddy viscosity models underpredict the SGS dissipation by about 35%,
while the dynamic mixed model underpredicts the real measured SGS dissipation
by about 19%. Self-consistently, the underprediction of dissipation of the models is
consistent with the slower decay of kinetic energy in the simulations as observed in
figure 14(b). While the mean SGS dissipations of the simulations and experiment are
of similar order of magnitude, the PDFs of local SGS dissipation from the simulations
are quite different from that of the experimental SGS dissipation.

Another SGS variable which is of direct interest in LES is the SGS stress tensor. A
comparison of the PDF of SGS shear stress, τ12, from the experiment, Smagorinsky,
dynamic Smagorinsky and dynamic mixed nonlinear models at x1/M = 48 is shown
in figure 20. In isotropic turbulence the mean shear (off-diagonal) stress vanishes,
consistent with the symmetric shape of the PDFs shown. The Smagorinsky and
dynamic Smagorinsky models give narrow distributions, severely underpredicting the
r.m.s. and magnitudes of the local stresses. Interestingly, the dynamic mixed nonlinear
model predicts the r.m.s. and PDF of the SGS shear stress quite accurately.

6. Summary and conclusions
Experimental measurements performed in the Corrsin wind tunnel have been used

to generate a database of decaying isotropic turbulence. The main objectives of this
study are to update the results of Comte-Bellot & Corrsin (1971) based on turbulence
at high Reynolds number, and to provide more data and details of interest in studies
of LES. High-Reynolds-number conditions (Reλ ≈ 720) are achieved using an active
grid system. Careful analysis of spectra shows that the anisotropy of the turbulence
(15%) with the present configuration is limited to the largest scales of the flow, of the
order of the wind tunnel height and that the inertial-range dynamics is very nearly
isotropic. The large-scale anisotropy is acceptable for the purpose of generating a
database for LES, since at those large scales the experimental conditions differ from
numerical simulations using periodic boundary conditions in a box anyway.
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The radial three-dimensional energy spectra at all the measurement locations are
deduced from the measured longitudinal one-dimensional energy spectra. They all
have a clear inertial range with a slope of −5/3 over 1.5 decades of wavenumber.
To allow for smooth transformations between one-dimensional and radial spectra,
as well as to simplify comparisons with simulations, the three-dimensional energy
spectra are presented using an explicit form that reproduces in detail the measured
behaviours. The velocity spectra provide full account of the two-point, second-order
moments during the decay. For the purpose of documenting higher-order statistics of
the turbulence structure at scales that are comparable to those resolved during LES,
a probe array composed of four X-wire sensors is used and two-dimensional box
filtering in the streamwise and cross-stream directions is applied to the experimental
data. We document PDFs of longitudinal and transverse filtered velocity increments
at various filtering scales and measure the hyper-flatness and skewness coefficients of
velocity increments. These data are presented in more detail in tabular form in the
Appendix.

Large-eddy simulations of decaying isotropic turbulence are performed using three
different SGS models: the Smagorinsky, dynamic Smagorinsky and dynamic mixed
nonlinear models. The simulation results are compared directly to the experimental
data in order to investigate the effects of different SGS models on the resolved
velocity statistics, and also on some statistics of the modelled SGS fields. Overall,
the various LES models predict fairly accurate second-order statistics (spectra), when
models are formulated consistently (i.e. dynamic models using the same filter type as
the implicit grid filter). For the spectral cutoff filter, the dynamic Smagorinsky model
simulates the energy spectrum more closely at smaller κ , and the dynamic mixed
nonlinear model has closer aggrement at large κ , while for the graded physical-space
filters it is the dynamic mixed nonlinear model that provides the best agreement with
the measured spectra. These findings are consistent with the early work presented in
Piomelli et al. (1988) who argued that the Smagorinsky model was consistent with
a cutoff filter whereas the mixed model was more justified in the context of graded
physical-space filters. Present results show that these arguments hold also when using
dynamic versions of these models.

Comparison of higher-order statistics from LES and experiments, such as PDFs of
filtered velocity increments, are performed in the context of graded filters only (since
the experimental data could not be filtered in the lateral direction using spectral
cutoff filters). The simulations are performed using a numerical discretization that
is finer than the filter scale, and are initialized using Gaussian-filtered experimental
energy spectra at the initial time. LES using any of the three models considered
underpredicts the intermittency level of the longitudinal velocity increment. The tails
in PDFs are less extended, and the hyper-flatness coefficients fall midway between
the data and Gaussian values. Such deviations are significant, but they occur at
displacements of the order of the filter scale. The LES results using eddy-viscosity
SGS models are slightly more intermittent than the measured transverse velocity
increments. Conversely, the dynamic mixed nonlinear model slightly underpredicts
the intermittency of transverse velocity increments. The latter model predicts more
realistic trends for the third-order structure function (skewness).

Comparisons of measured surrogate SGS dissipation −τij S̃ij with the SGS
dissipation predicted by the models show significant differences in their PDFs. As is
well-known the eddy viscosity models do not predict backscatter, but the dynamic
mixed nonlinear model also does not provide as much backscatter as shown in
measurements. More research is needed to examine whether this difference is related to
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the SGS models’ deficiency in reproducing high enough intermittency of longitudinal
velocity increments. The mixed nonlinear model, on the other hand, provides good
predictions of SGS shear stress variance and its PDF, whereas the SGS stress variance
is severely underpredicted by the eddy viscosity models.

Overall, the present results confirm the generally held view that LES can provide
good statistics of resolved velocity in isotropic turbulence, where the most important
role of SGS models is to provide the correct rate of mean energy dissipation. The
numerical results of Langford & Moser (1999) based on their ‘optimal LES model’
(which is based on two-point information and is therefore more sophisticated than
the simple local models considered here) also showed that statistics of resolved
turbulence in LES are well predicted if the dissipation rate in Fourier space
is properly reproduced. However, by using detailed comparisons under carefully
controlled conditions, the present work has identified some differences between LES
and experimental data in high-order statistics and tails of the velocity increment
PDFs at scales comparable to the filter scales.

It would be interesting to explore whether these differences can be reduced using
‘optimal’ models as described in Langford & Moser (1999) or using other modelling
approaches. We recall that a number of new SGS models have been proposed in
recent years, such as the vortex method of Pullin & Saffman (1993) and Misra &
Pullin (1997), the fractal model of Scotti & Meneveau (1999), the filtered structure
function model in Lesieur & Métais (1996), the deconvolution models of Stolz, Adams
& Kleiser (2001) and several others. The present study provides detailed experimental
data against which such new SGS modelling concepts can be tested in considerable
detail and at a high Reynolds number.

We thank Mr Matthew P. Hayden for his contribution to the design and
construction of the active grid. This work was supported financially by the National
Science Foundation (grants CTS-9803385 and CTS-0120317).

Appendix. Measured data in tabular form
The main experimental results of the present study are documented in this Appendix

in tabular form. Table 2 shows the measured one-dimensional spectra, E11(κ) and
E22(κ), in a range of wavenumbers from κ1 = 1 m−1 to 4000 m−1 in 21 logarithmically
spaced wavenumber bands. Table 3 presents the PDF value of longitudinal and
transverse velocity increments at a single filter scale (∆4) and two displacement
values. Table 4 shows the measured skewness and hyper-flatness factors for filtered
velocity increments at two displacements.

The radial energy spectra fitted from the data at all four downstream distances can
be represented by

E(κ) = 1.613 ε2/3κ−5/3

[
κ�

[(κ�)1.2 + 0.39]0.833

]5/3+4

e−2.1 κη

×
[
1 + 0.522

(
1

π
arctan {10 log10(κη) + 12.58} + 1

2

)]
, (A 1)

where ε, � and η are parameters that depend upon x1/M and that are tabulated in
table 1.
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PDF (δũ1/δũ1r.m.s.) PDF (δũ2/δũ2r.m.s.)

δũi/δũir.m.s. r = ∆4 r = 2∆4 r = ∆4 r = 2∆4

−6.5 0.250 ×10−5 0.806 ×10−5 – –
−6.0 0.350 ×10−4 0.364 ×10−4 – –
−5.5 0.553 ×10−4 0.339 ×10−4 0.170 ×10−4 –
−5.0 0.140 ×10−3 0.107 ×10−3 0.925 ×10−4 0.145 ×10−4

−4.5 0.502 ×10−3 0.441 ×10−3 0.219 ×10−3 0.130 ×10−3

−4.0 0.156 ×10−2 0.106 ×10−2 0.748 ×10−3 0.453 ×10−3

−3.5 0.394 ×10−2 0.384 ×10−2 0.263 ×10−2 0.182 ×10−2

−3.0 0.104 ×10−1 0.962 ×10−2 0.715 ×10−2 0.599 ×10−2

−2.5 0.239 ×10−1 0.248 ×10−1 0.193 ×10−1 0.194 ×10−1

−2.0 0.526 ×10−1 0.551 ×10−1 0.497 ×10−1 0.510 ×10−1

−1.5 0.111 0.114 0.112 0.117
−1.0 0.207 0.215 0.223 0.228
−0.5 0.332 0.332 0.364 0.368
−0.0 0.426 0.420 0.442 0.427

0.5 0.394 0.393 0.367 0.362
1.0 0.259 0.260 0.223 0.228
1.5 0.116 0.120 0.112 0.116
2.0 0.409 ×10−1 0.406 ×10−1 0.479 ×10−1 0.506 ×10−1

2.5 0.131 ×10−1 0.133 ×10−1 0.194 ×10−1 0.182 ×10−1

3.0 0.374 ×10−2 0.349 ×10−2 0.734 ×10−2 0.649 ×10−2

3.5 0.893 ×10−3 0.740 ×10−3 0.277 ×10−2 0.196 ×10−2

4.0 0.134 ×10−3 0.185 ×10−3 0.753 ×10−3 0.614 ×10−3

4.5 0.167 ×10−4 0.584 ×10−5 0.279 ×10−3 0.193 ×10−3

5.0 – – 0.121 ×10−3 0.478 ×10−4

5.5 – – 0.867 ×10−4 0.275 ×10−4

6.0 – – 0.139 ×10−4 –

Table 3. PDFs of filtered velocity increments at x1/M = 48 at r = ∆4 and r = 2∆4. Missing
values are not sufficiently converged.

−S Fδũ1
(4) Fδũ1

(6) Fδũ1
(8) Fδũ1

(10) Fδũ2
(4) Fδũ2

(6) Fδũ2
(8) Fδũ2

(10)

r = ∆4 0.340 3.75 29.5 399 8051 3.76 28.2 346 6139
r = 2∆4 0.312 3.60 26.4 331 6390 3.49 22.8 229 3169

Table 4. Skewnesses and hyper-flatnesses of filtered velocity increments at x1/M = 48 at
r = ∆4 and r = 2∆4.
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